

DPP - 5	(Electrostatic	S
---------	----------------	---

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/93
Video Solution on YouTube:-	https://youtu.be/Ssof1FYSLBo
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/39

Q 1. Two dipoles of dipole moments p each are placed on points A (a, 0) and B (-a, 0) as shown in figure. How much work is done in rotating both the dipoles with 90° angle in clockwise direction?

(b) $-\frac{KP}{r^4}$ (c)Zero (d) $-\frac{KP}{r^4}$

(a) PE

- Q 2. Two small electric dipoles each of dipole moment p (along x axis) are situated at (0, 0, 0) and (r, 0, 0). The electric potential at a point $(\frac{r}{2}, \frac{\sqrt{3}r}{2}, 0)$ is:
 - (a) $\frac{P}{4\pi\epsilon_0 r^2}$ (b) 0 (c) $\frac{P}{2\pi\epsilon_0 r^2}$ (d) $\frac{P}{8\pi\epsilon_0 r^2}$
- Q 3. A thin ring of radius R metres is placed in x-y plane such that its centre lies on origin. The half ring in region x<0 carries uniform linear charge density +1 C/m and the remaining half ring in region x>0 carries uniform linear charge density-1 C/m.

(a) Then the direction of electric field at point P whose coordinates are $(0m, +\frac{R}{2}m)$ is along positive x-direction

- (b) Then the electric potential (in volts) at point P whose coordinates are $(0m, +\frac{R}{2}m)$ is 0
- (c) Then the dipole moment of the ring in C–m is $(4R^21)\hat{i}$
- (d) Then the dipole moment of the ring in C–m is $(2R^2l)\hat{\iota}$
- Q 4. Two short dipoles of dipole moment p are placed at two corners of square as shown in figure. What is the ratio of magnitude of electric field at two points O & A?

Q 5. An electric dipole is made up of two particles having charges $+1\mu$ C, mass 1 kg and other with charge -1μ c and mass 1 kg separated by distance 1 m. It is in equilibrium in a uniform electric

field of 20×10^3 V/m. If the dipole is deflected through angle 2°, time taken by it come again in equilibrium is

(a) $2.5 \pi s$ (b) 2.5 s (c) $5 \pi s$ (d) 4π

Q 6. Two short electric dipoles are placed as shown. The energy of electric interaction between these dipoles will be –

Q 7. 4 charges are placed each at a distance 'a' from origin. The dipole moment of configuration is-

3q 0.0

(a) 2qa(b) $2\sqrt{2} qa$ (c) $2\sqrt{5} qa$

- (d) None of these
- Q 8. The magnitude of electric field intensity at point B (2, 0, 0) due to a dipole of dipole moment, $\vec{p} = \hat{i} + \sqrt{3}\hat{j}$ kept at origin is (assume that the point B is at large distance from the dipole)

Q 9. Figure shows two short dipole moments parallel to each other and placed at a distance x apart is, then –

- (a) they will repel each other
- (b) they will attract each other
- (c) force of interaction is of magnitude of $\frac{3P_1P_2}{4\pi\varepsilon_0 x^4}$
- (d) force of interaction is of magnitude of $\frac{6P_1P_2}{4\pi\epsilon_0 x^4}$

(d) Zero

For the situation shown in the figure below (assume r >> length of dipole) mark out the Q 10.

A short dipole of dipole moment p is placed on the axis of uniformly charged ring of radius R Q 12. and charge Q. Distance of dipole from centre of ring is $r = \frac{R}{\sqrt{2}}$ and it is placed along axis. Force on dipole is $(c)\frac{2\sqrt{2}KpQ}{R^3}$

(a) $\frac{2KpQ}{R^3}$

In given figure circle is in xy plane and dipole is along x axis. O is centre of circle and R is Q 13. radius of circle. If there are 4 points on circle where electric field is perpendicular to dipole moment, possible values of distance of O from origin is/are

(b) $\frac{KpQ}{3\sqrt{3}R^3}$

Answer Key

Q.1 c	Q.2 b	Q.3 a, b, c	Q.4	b	Q.5	a
Q.6 b	Q.7 a	Q.8 c	Q.9	a, c	Q.10	b, c
Q.11 a	Q.12 d	Q.13 a, c				

× × ×	Interactiv Structured Live Tests Personal (
24 months No cost EMI		2.514	33/mo 56,000	>	
18 months No cost EMI			25/mo ₹47,250	>	
12 months No cost EMI			08/mo ₹38,500	>	
6 months No cost EMI		63	67/mo £28,000	>	
To be paid as a one-time payment View all plans					
Add a re	ferral code)		APPLY	

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC *				
S	India's Be	est Educators				
8	Interactiv	Interactive Live Classes				
3	Structure	Structured Courses & PDFs				
S e	Live Tests	Live Tests & Quizzes				
- 492×	Personal	Personal Coach				
×	Study Plo	inner				
A740.23						
24 months		₹2,100/mo	>			
No cost EMI		+10% OFF ₹50,400				
18 months		₹2,363/mo	>			
No cost EMI		+10% OFF ₹42,525				
12 months		₹2.888/maa				
No cost EMI		₹2,888/mo +10% OFF ₹34,650	>			
NO COST EMI		+10% OFF (34,630				
6 months		₹4,200/mo				
No cost EMI		+10% OFF ₹25,200	>			
To be paid as a one-time payment						
	Viev	v all plans				
Awesom	e! PHYSIC	SLIVE code applied	×			

Written Solution

DPP-5 : Electric Dipole By Physicsaholics Team

Q1) Two dipoles of dipole moments p each are placed on points A (a, 0) and B (-a, 0) as shown in figure. How much work is done in rotating both the dipoles with 90° angle in clockwise direction?

►X

 \cap

29

P PE= 1)

Zq

R

(a) **PE**

(d)

Zero

Q2) Two small electric dipoles each of dipole moment p (along x axis) are situated at (0, 0, 0) and (r, 0, 0). The electric potential at a point $\left(\frac{r}{2}, \frac{\sqrt{3}r}{2}, 0\right)$ is :

Q3) A thin ring of radius R metres is placed in x-y plane such that its centre lies on origin. The half ring in region x< 0 carries uniform linear charge density $+\lambda$ C/m and the remaining half ring in region x> 0 carries uniform linear charge density $-\lambda$ C/m.

(a) Then the direction of electric field at point P whose coordinates are (0m, +^R/₂m) is along positive x-direction
(b) Then the electric potential (in volts) at point P whose coordinates are (0m, +^R/₂m) is 0
(c) Then the dipole moment of the ring in C-m is (-4R²λ)î
(d) Then the dipole moment of the ring in C-m is (2R²λ)î

Q4) Two short dipoles of dipole moment p are placed at two corners of square as shown in figure. What is the ratio of magnitude of electric field at two points O & A?

Q5) An electric dipole is made up of two particles having charges $+1\mu$ C, mass 1 kg and other with charge -1μ c and mass 1 kg separated by distance 1 m. It is in equilibrium in a uniform electric field of 20×10^3 V/m. If the dipole is deflected through angle 2°, time taken by it come again in equilibrium is

Q7) 4 charges are placed each at a distance 'a' from origin. The dipole moment of configuration is- $P = \sqrt{a}$

ĴС (b) $2\sqrt{2}$ qa Q (c) $2\sqrt{5}$ qa (d) None of these $= 2\sqrt{q}$

Q8) The magnitude of electric field intensity at point B (2, 0, 0) due to a dipole of dipole moment, $\vec{p} = \hat{i} + \sqrt{3} \hat{j}$ kept at origin is (assume that the point B is at large distance from the dipole)

Q9) Figure shows two short dipole moments parallel to each other and placed at a distance x apart is, then –

 \rightarrow

Ρ

(c) force of interaction is of magnitude of $\frac{3P_1P_2}{4\pi\varepsilon_0 x^4}$

(a) they will repel each other

(b) they will attract each other

(d) force of interaction is of magnitude of $\frac{6P_1P_2}{4\pi\varepsilon_0 x^4}$

 $V = + \frac{KP_{1}P_{2}}{\chi^{3}}$ $F = -\frac{dV}{d\chi}$ $= -\left(-\frac{3KP_{1}P_{2}}{\chi^{4}}\right)$ $F = \frac{3KP_{1}P_{2}}{\chi^{4}}$

 \mathbf{P}_2

Q10) For the situation shown in the figure below (assume r >> length of dipole) mark out the correct statement(s).

p

(Small dipole)

= PE = KPQ

due to 9)

 \otimes

(c) Torque acting on the dipole is $\frac{pQ}{1-q}$ in clockwise direction.

F= KPA

(a) Force acting on the dipole is zero.

(d) Torque acting on the dipole is $\frac{pQ}{4\pi\varepsilon_0 r^2}$ in anti-clockwise direction

(b) Force acting on the dipole is approximately $\frac{pQ}{4\pi\varepsilon_0 r^3}$ and is acting upward

Q12) A short dipole of dipole moment p is placed on the axis of uniformly charged ring of radius R and charge Q. Distance of dipole from centre of ring is $r = \frac{R}{\sqrt{2}}$ and it is placed along axis. Force on dipole is

h

 $\chi = R_{1/2}$

dx = 0

= 0

9+

(a) $\frac{2KpQ}{R^3}$

 $(c)^{\frac{2}{2}}$

Q13) In given figure circle is in xy plane and dipole is along x axis. O is centre of circle and R is radius of circle. If there are 4 points on circle where electric field is perpendicular to dipole moment, possible values of distance of O from origin is/are Here line of I field

290-0

Grussing given circle.

(b) 2R (e) 1.5 R tangent $\tan \alpha = \frac{1}{2} \tan 0$. (d) 3R log 0=R $Gt 0 = \frac{1}{2} tan 0$ 8<R13 tano = 12 at &= RJ3, line 5 8<17R Of I field touches given Circle. $x = R \sqrt{3}$ |

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-

https://youtu.be/Ssof1FYSLBo

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

