DPP - 5 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:- https://youtu.be/Ssof1FYSLBo

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. Two dipoles of dipole moments p each are placed on points $A(a, 0)$ and $B(-a, 0)$ as shown in figure. How much work is done in rotating both the dipoles with 90° angle in clockwise direction?
(a) PE
(b) $-\frac{K P}{r^{4}}$
(c)Zero
(d) $-\frac{K P}{r^{4}}$

Q 2. Two small electric dipoles each of dipole moment p (along x axis) are situated at $(0,0,0)$ and $(\mathrm{r}, 0,0)$. The electric potential at a point $\left(\frac{r}{2}, \frac{\sqrt{3} r}{2}, 0\right)$ is:
(a) $\frac{P}{4 \pi \epsilon_{0} r^{2}}$
(b) 0
(c) $\frac{P}{2 \pi \epsilon_{0} r^{2}}$
(d) $\frac{P}{8 \pi \epsilon_{0} r^{2}}$

Q 3. A thin ring of radius R metres is placed in $x-y$ plane such that its centre lies on origin. The half ring in region $x<0$ carries uniform linear charge density $+1 \mathrm{C} / \mathrm{m}$ and the remaining half ring in region $\mathrm{x}>0$ carries uniform linear charge density $-1 \mathrm{C} / \mathrm{m}$.
(a) Then the direction of electric field at point P whose coordinates are $\left(0 \mathrm{~m},+\frac{R}{2} \mathrm{~m}\right)$ is along positive x -direction
(b) Then the eleetric potential (in volts) at point P whose coordinates are $\left(0 \mathrm{~m},+\frac{R}{2} \mathrm{~m}\right)$ is 0
(c) Then the dipole moment of the ring in $\mathrm{C}-\mathrm{m}$ is $\left(4 R^{2} \mathrm{l}\right) \hat{\imath}$
(d) Then the dipole moment of the ring in $\mathrm{C}-\mathrm{m}$ is $\left(2 R^{2} 1\right) \hat{\imath}$

Q 4. Two short dipoles of dipole moment p are placed at two corners of square as shown in figure. What is the ratio of magnitude of electric field at two points $\mathrm{O} \& \mathrm{~A}$?

(a) 2
(b) $2 \sqrt{2}$
(c) 1
(d) $\sqrt{2}$

Q 5. An electric dipole is made up of two particles having charges $+1 \mu \mathrm{C}$, mass 1 kg and other with charge $-1 \mu \mathrm{c}$ and mass 1 kg separated by distance 1 m . It is in equilibrium in a uniform electric
field of $20 \times 10^{3} \mathrm{~V} / \mathrm{m}$. If the dipole is deflected through angle 2°, time taken by it come again in equilibrium is
(a) $2.5 \pi \mathrm{~s}$
(b) 2.5 s
(c) $5 \pi \mathrm{~s}$
(d) 4π

Q 6. Two short electric dipoles are placed as shown. The energy of electric interaction between these dipoles will be -

(a) $\frac{2 k p_{1} p_{2} \operatorname{Cos} \theta}{r^{3}}$
(b) $-\frac{2 k p_{1} p_{2} \operatorname{Cos} \theta}{r^{3}}$
(c) $-\frac{2 k p_{1} p_{2} \sin \theta}{r^{3}}$
(d) $-\frac{4 k p_{1} p_{2} \operatorname{Cos} \theta}{r^{3}}$

Q 7. 4 charges are placed each at a distance ' a ' from origin. The dipole moment of configuration is-

(a) 2 qa
(b) $2 \sqrt{2}$ qa
(c) $2 \sqrt{5} q \mathbf{q}$
(d) None of these

Q 8. The magnitude of electric field intensity at point $\mathrm{B}(2,0,0)$ due to a dipole of dipole moment, $\vec{p}=\hat{\imath}+\sqrt{ } 3 \hat{\jmath}$ kept at origin is (assume that the point B is at large distance from the dipole)
(a) $\frac{\sqrt{13}}{8} k \square$
(b) $\frac{\sqrt{13}}{4} k$
(c) $\frac{\sqrt{7}}{8} k$
(d) $\frac{\sqrt{7}}{4} k$

Q 9. Figure shows two short dipole moments parallel to each other and placed at a distance x apart is, then -

(a) they will repel each other
(b) they will attract each other
(c) force of interaction is of magnitude of $\frac{3 P_{1} P_{2}}{4 \pi \varepsilon_{0} x^{4}}$
(d) force of interaction is of magnitude of $\frac{6 P_{1} P_{2}}{4 \pi \varepsilon_{0} x^{4}}$

Q 10. For the situation shown in the figure below (assume $r \gg$ length of dipole) mark out the correct statement(s).

(a) Force acting on the dipole is zero.
(b) Force acting on the dipole is approximately $\frac{p Q}{4 \pi \varepsilon_{0} r^{3}}$ and is acting upward
(c) Torque acting on the dipole is $\frac{P Q}{4 \pi \varepsilon_{0} r^{2}}$ in clockwise direction.
(d) Torque acting on the dipole is $\frac{p Q}{4 \pi \varepsilon_{0} r^{2}}$ in anti-clockwise direction

Q 11. Two point charges +4 q and -q are placed on x axis at separation l_{0}. Number of points on x axis where a dipole will experience zero force is (do not count $x= \pm \infty$)
(a) 2
(b) 1
(c) 3
(d) 4

Q 12. A short dipole of dipole moment p is placed on the axis of uniformly charged ring of radius R and charge Q . Distance of dipole from centre of ring is $\mathrm{r}=\frac{R}{\sqrt{2}}$ and it is placed along axis.
Force on dipole is
(a) $\frac{2 K p Q}{R^{3}}$
(b) $\frac{K p Q}{3 \sqrt{3} R^{3}}$
(c) $\frac{2 \sqrt{2} K p Q}{R^{3}}$
(d) Zero

Q 13. In given figure circle is in xy plane and dipole is along x axis. O is centre of circle and R is radius of circle. If there are 4 points on circle where electric field is perpendicular to dipole moment, possible values of distance of O from origin is/are

(a) R
(b) 2 R
(c) 1.5 R
(d) 3 R

Answer Key

Q. 1 c	Q. 2 b	Q. $3 \mathrm{a}, \mathrm{b}, \mathrm{c}$	Q. 4 b	Q. 5 a
Q. 6 b	Q. 7 a	Q. 8 c	Q. 9 a, c	Q. 10 b, c
Q. 11 a	Q. 12 d	Q. 13 a, c		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 5 : Electric Dipole By Physicsaholics Team

Q1) Two dipoles of dipole moments p each are placed on points $A(a, 0)$ and $B(-a$, 0) as shown in figure. How much work is done in rotating both the dipoles with 90° angle in clockwise direction?
(a) PE
(b) $-\frac{K P}{r^{4}}$
(c) Zero
(d) $-\frac{K P}{r^{4}}$

Q2) Two small electric dipoles each of dipole moment p (along x axis) are situated at $(0,0,0)$ and $(r, 0,0)$. The electric potential at point $\left(\frac{r}{2}, \frac{\sqrt{3} r}{2}, 0\right)$ is :

(a) $\frac{P}{4 \pi \epsilon_{0} r^{2}}$
(b) 0
(c) $\frac{P}{2 \pi \epsilon_{0} r^{2}}$
(d) $\frac{P}{8 \pi \epsilon_{0} r^{2}}$

Q3) A thin ring of radius R metres is placed in $x-y$ plane such that its centre lies on origin. The half ring in region $x<0$ carries uniform linear charge density $+\lambda \mathrm{C} / \mathrm{m}$ and the remaining half ring in region $x>0$ carries uniform linear charge density$\lambda \mathrm{C} / \mathrm{m}$.

(a) Then the direction of electric field at point P whose coordinates are ($0 \mathrm{~m},+\frac{R}{2} \mathrm{~m}$) is along positive x -direction
(b) Then the electric potential (in volts) at point P whose coordinates are ($0 \mathrm{~m},+\frac{R}{2} \mathrm{~m}$) is 0
(c) Then the dipole moment of the ring in $\mathrm{C}-\mathrm{m}$ is $\left(-4 R^{2} \lambda\right) \hat{\imath}$
(d) Then the dipole moment of the ring in $\mathrm{C}-\mathrm{m}$ is $\left(2 R^{2} \lambda\right) \hat{l}$

Ans. a,b,c

$$
\begin{aligned}
V_{A} & =5 \frac{k s x^{2} 100}{1 /}+\frac{k\left(-5 r_{200}\right.}{1 / x_{2}} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& d P=(\langle R d \theta) 2 R \cos \theta \\
& \int d P=2 \delta R^{2} \int_{-\pi / 2}^{\int \pi / 20} \theta d Q \\
& \begin{aligned}
P & =2 \delta R^{2}\left[+S_{L L} 0\right)_{-\pi / 2}^{\pi / 2} \\
& =4 \delta R^{2}+R^{2}
\end{aligned} \\
& =4 \delta R^{2} a l_{a}-x a x \times \frac{1}{x_{2}^{2}}
\end{aligned}
$$

Q4) Two short dipoles of dipole moment p are placed at two corners of square as shown in figure. What is the ratio of magnitude of electric field at two points $\mathrm{O} \&$ A?

$$
E_{A}=\frac{K P}{l^{3}} \sqrt{2}
$$

(a) 2
(b) $2 \sqrt{2}$
(c) 1
(d) $\sqrt{2}$ $E_{0}=2 \frac{k R \times 2 \sqrt{n}}{x^{3}+\sqrt{2}}$

Q5) An electric dipole is made up of two particles having charges $+1 \mu \mathrm{C}$, mass 1 kg and other with charge $-1 \mu \mathrm{c}$ and mass 1 kg separated by distance 1 m . It is in equilibrium in a uniform electric field of $20 \times 10^{3} \mathrm{~V} / \mathrm{m}$. If the dipole is deflected through angle 2°, time taken by it come again in equilibrium is

Q6) Two short electric dipoles are placed as shown. The energy of electric

Q7) 4 charges are placed each at a distance ' a ' from origin. The dipole moment of configuration is-
(a) 2 qa
(b) $2 \sqrt{2} \mathrm{qa}$
(c) $2 \sqrt{5} \mathrm{qa}$
(d) NoneOf these

Q8) The magnitude of electric field intensity at point $B(2,0,0)$ due to a dipole of dipole moment, $\vec{p}=\hat{\imath}+\sqrt{ } 3 \hat{\jmath}$ kept at origin is (assume that the point B is at large distance from the dipole)

Q9) Figure shows two short dipole moments parallel to each other and placed at a distance x apart is, then -
(a) they will repel eachother
(b) they will attracteach other
(c) force of inferaction is of magnitude of $\frac{3 P_{1} P_{2}}{4 \pi \varepsilon_{0} x^{4}}$
(d) force of interaction is $g f$ magnitude of $\frac{6 P_{1} P_{2}}{4 \pi \varepsilon_{0} x^{4}}$

$$
\begin{aligned}
U & =+\frac{K p_{1} p_{2}}{x^{3}} \\
F & =-\frac{d U}{d x} \\
& =-\left(\frac{-3 k p_{1} p_{2}}{x^{4}}\right) \\
F & =\frac{3 K p_{1} p_{2}}{x^{4}}
\end{aligned}
$$

Q10) For the situation shown in the figure below (assume $r \gg$ length of dipole) mark out the correct statement(s).

(a) Force acting on the dipole is zero.
$\tau=P E=\frac{K P Q}{r^{2}} \otimes$
(b) Force acting on the dipole is approximately $\frac{P Q}{4 \pi \varepsilon_{0} r^{3}}$ and is acting upward
(c) Torque acting on the dipole is $\frac{p Q}{4 \pi \varepsilon_{0} \hat{\gamma}^{2}}$ in clockwise direction.
(d) Torque acting on the dipole is $\frac{P Q}{4 \pi \varepsilon_{0} r^{2}}$ in anti-clockwise direction

Q11) Two point charges +4 q and -q are placed on x axis at separation l_{0}. Number of points on x axis where a dipole will experience zero force is (do not count $\mathrm{x}=$

Q12) A short dipole of dipole moment p is placed on the axis of uniformly charged ring of radius R and charge Q . Distance of dipole from centre of ring is $\mathrm{r}=\frac{R}{\sqrt{2}}$ and it is placed along axis. Force on dipole is
(a) $\frac{2 K p Q}{R^{3}}$
(b) $\frac{K p Q}{\sqrt[3]{3 R^{3}}}$

$$
\begin{aligned}
& \text { at } x=R / \sqrt{2} \\
& \frac{d E}{d x}=0 \\
& \Rightarrow F=0
\end{aligned}
$$

Q13) In given figure circle is in my plane and dipole is along x axis . O is centre of circle and R is radius of circle. If there are 4 points on circle where electric field is perpendicular to dipole moment, possible values of distance of O from origin is/are

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-
https://youtu.be/Ssof1FYSLBo

Written Solution on Website:-

Chalo Nikis

